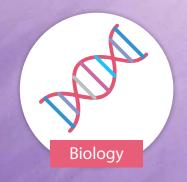


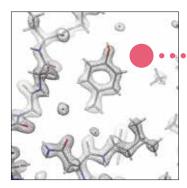
APOLLO CAMERA Ultra-Fast Electron Counting For Cryo-EM

Delivering Bigger | Better | Faster | Cameras For Electron Microscopy


NEXT-GENERATION DIRECT DETECTOR FOR ELECTRON COUNTING

- Our novel direct detection device (DDD®) delivers ultra-low noise and extraordinary resolution for nearly any beam current for cryo-EM.
- Electron counting in hardware is elegant, fast, easy-to-use, and more cost effective.
- Change the paradigm for cryo-EM by removing camera limitations.
- On-chip CDS and digital output of detected events minimizes noise.
- \rightarrow 4k \times 4k (16.8 million) physical pixels with larger 8 µm pixel size to maximize resolution.
- Super-resolution 8k × 8k (67.1 MP) counted movies saved to the computer for motion correction, dose filtering, etc.
- Integrated with SerialEM, Leginon, etc., for automated acquisition.
- Generate better results than you've ever achieved before.

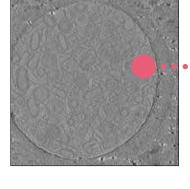
1.46 Å resolution cryo-EM structure of apoferritin (EMD-33707) from Apollo on a JEOL CRYO ARM 300 II, acquired at 12 e-/physical pixel/s (eps).


DETECTOR APPLICATION:

Direct Electron INNOVATION PROPELLING DISCOVERY

directelectron.com • sales@directelectron.com • (858) 384-0291

OPTIMIZED FOR DEMANDING TEM APPLICATIONS



High-Resolution Single-Particle

Ultra-large search mode images without montaging

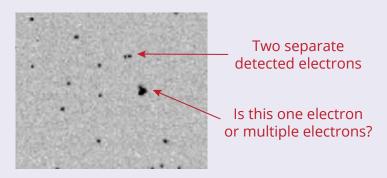
High-Throughput Automation

Ultra-fast electron counting enables short exposure times

Cryo-Tomography

Large field-of-view and high contrast

Continuous Rotation & in situ


Real-time counting enables dynamic applications

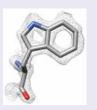
MicroED (Diffraction)

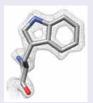
High dynamic range & large area for crystallography

MEASURING COUNTING SPEED: EPS, NOT FPS

PREVIOUS-GENERATION CAMERAS

It is impossible to determine if more than one electron has hit a the sensor at the same place and time. This results in coincidence loss. When the electron beam is too bright, it is likely that multiple electrons will be coincident (same time and place on the sensor) and thus be missed. **Coincidence loss is a failure to detect** electrons when the beam is too bright compared to the speed of the sensor.

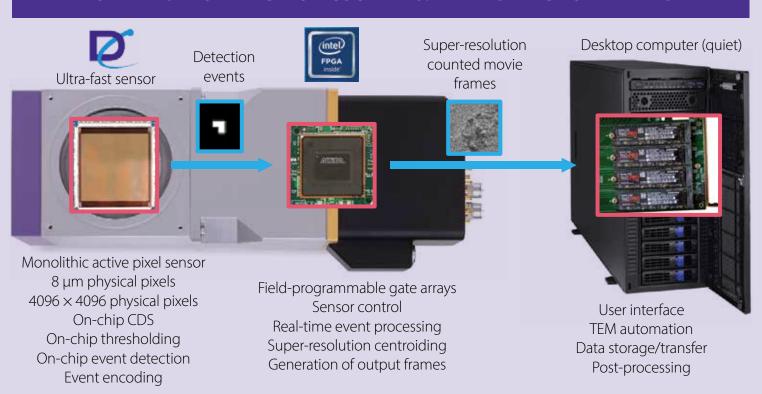

Older direct detection cameras use an internal frame rate to spread the beam over multiple frames. On older cameras, higher fps means lower coincidence loss.


APOLLO

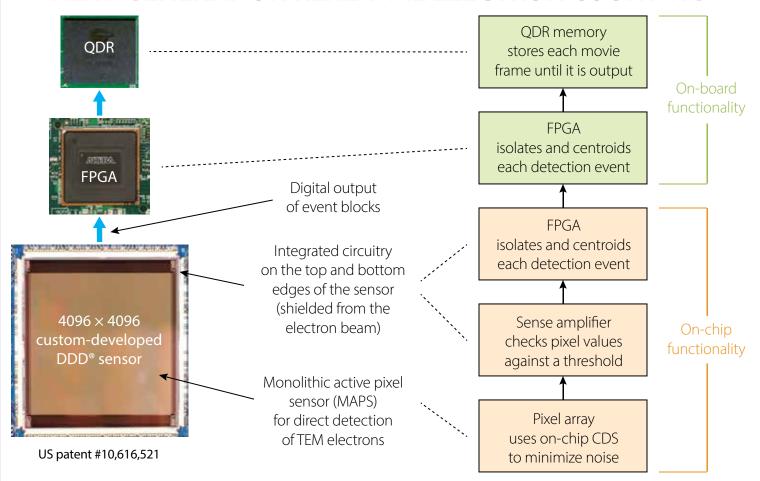

Next-generation event-based detection does not rely on internal integrating-mode frames to ensure the sparsity necessary for counting, so internal fps does not make sense.

To compare counting speed between older and newer technology, the critical measure is how much coincidence loss occurs as the beam gets brighter. In other words, how well does electron counting work versus the input electrons per pixel per second (eps)?

Apollo's ultra-fast counting is unmatched.


16 eps \rightarrow 1.68 Å

 $34 \text{ eps} \rightarrow 1.68 \text{ Å}$


78 eps \rightarrow 1.68 Å

Reconstructions courtesy of Scott Stagg, Florida State University (Tallahassee, FL).

A NEW STRATEGY FOR ELECTRON COUNTING: EVENT DETECTION IN HARDWARE

NEXT-GENERATION REAL-TIME ELECTRON COUNTING

APOLLO CAMERA

Email | info@directelectron.com Web | www.directelectron.com Phone | +1 858-384-0291

Tem Electron Energy

Sensitive to 80 keV - 1.25 MeV | optimized for 200 - 300 keV

Pixel Array Size

4096 × 4096 (16.8 million pixels) | 8 μm pixel pitch

Sensor Design

Novel event-based ultra-fast DDD® sensor

on-chip correlated double sampling (CDS) | on-chip thresholding | digital readout

backthinned | radiation hardened

Acquisition Modes

Event-based electron counting, always

Detection Efficiency

>90% For 200 - 300 kV

Exposure Rate

~0.01 - 75 e-/pixel/second (ranging ~4 orders of magnitude)

Linearity

>95% linear up to ~15 e-/pixel/second

Dose Fractionation

8192 × 8192 (67.1 Million pixels) super-resolution counted movies

flexible dose fractionation time | 16.7 ms minimum

TEM Compatibility

All major TEM manufacturers & models

Mounting Position

Fully retractable | compatible with a wide-range of configurations typically in TEM bottom

port, pre- or post-energy filter, or in JEOL film drawer

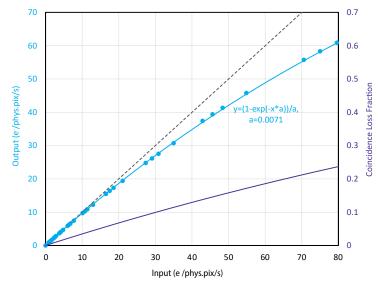
Sensor Protection

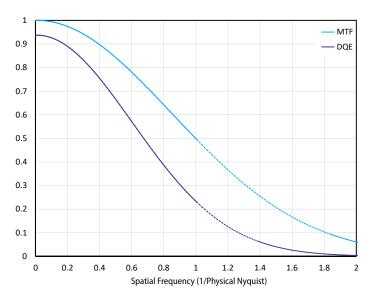
TEM blanking/shuttering | failsafe software

Computer System

High-performance computer | Windows 10 | Nvidia GPU(s) | up to 55 TB storage

Image Format


Non-proprietary | MRC, TIFF, or TIFF LZW


Automation Software

SerialEM | Leginon | JADAS (JEOL) | open API (supporting Python, C, C++, C#, etc.)

Integrations

CEFID post-column energy filter (CEOS)

